The FINANCIAL — Panasonic Corporation on October 1 announced that it developed a semiconductor encapsulation material for power devices that boasts the industry’s top-class heat-resistance performance (glass transition temperature) of 210°C and superior long-term reliability, and will start shipping samples of the products, CV8540 series, from October 2015.
Requirements for vehicles that consume less energy and for smaller sized and lighter weight in-vehicle devices have been increasing. To address these issues, the industry is paying attention to power devices based on silicon carbide (SiC) or gallium nitride (GaN). When used in a vehicle, however, power devices must have superior high-temperature resistance and high-current characteristics, as well as excellent long-term reliability, according to Panasonic.
Silicon devices that are currently in wide use can sometimes reach temperatures of up to about 125 to 150°C when in operation. Because of their ability to deal with high current, SiC or GaN devices can operate in such high-temperature environments, even when temperatures soar to 200°C or more.
To make the most of this advantage, semiconductor encapsulation materials for power devices must also have greater advanced heat resistance and long-tern reliability. Conventional encapsulation materials are at a disadvantage in that they peel off from the leadframe and the device when subjected to high temperatures. Panasonic has now achieved the industry’s top-class*1 heat-resistance performance and improved the adhesiveness inside the material, allowing the company to develop and commercialize a semiconductor encapsulation material with superior long-tern reliability.
This encapsulation material has the following advantages:
1.The industry’s highest heat-resistance characteristics contribute to the use of power devices in a heat-generating or high-temperature environment.
High-temperature resistance characteristics (glass transition temperature of the encapsulation material): up to 210°C (our conventional products*2: 170 to 180°C)
2.Superior long-term reliability contributes to improving the reliability of power devices.
In the following environmental resistance tests, neither cracks in the encapsulation material nor peeling from the leadframe and the power device element were observed.
・Thermal cycle test: -40 to 200°C, 1,000 cycles
・High-temperature shelf test: Left at 200°C for 3,000 hours
Discussion about this post